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Coalescing binary stars are perhaps the most promising sources for
the observation of gravitational waves with laser interferometric gravity
wave detectors. The waveform from these sources can be predicted
with sufficient accuracy for matched filtering techniques to be applied.
In this paper we present a parallel afgorithm for detecting signals from
coalescing gompact binaries by the method of matched filtering. We
also report the details of its implementation on a 256-node connection
machine consisting of a network of transputers. The results of our
analysis indicate that parallel processing is a promising approach to
on-line analysis of data from gravitational wave detectors to filter out
coalescing binary signals. The algorithm described is quite general in
that the kernel of the algorithm is applicable to any set of matched
filters. © 1993 Academic Press, Inc.

1. INTRODUCTION

The detection of gravitational waves from galactic and
extragalactic sources will provide us with an alternative
view of the universe hitherto not obtained via the elec-
tromagnetic spectrum of radiation. Their detection is
important to further our understanding of fundamental
theories of physics: confirming the predictions of Einstein’s
general theory of relativity, providing useful inpufs towards
the solution to a long-standing theoretical problem of
quantizing gravity, obtaining accurate values of certain
cosmological parameters like the Hubble constant [ 1], etc.
These are only a few reasons why several groups around
the world have been concentrating on building laser
interferometric gravitational wave detectors of very high
sensitivity, several prototypes of which already exist in
different countries [2].

The principle behind such a detector is the following:

An interferometric detector, in its simplest form, is a
Michelson interferometer consisting of a corner mirror and
two end mirrors. Instead of an ordinary monochromatic
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light a continuous wave laser is used as the source of light.
The beam is first split and reflected by the mirrors several
times and then brought together to form a fringe pattern on
a photo-diode. A gravitational wave impinging on the
detector causes the masses attached to the two end mirrors
to oscillate, which results in a shift in the fringe pattern. This
shift constitutes the gravitational wave signal.

However, the data from the detector is contaminated with
noise from several sources, which limits the sensitivity of the
detector. The sensitivity can be expressed in terms of the
metric perturbation due to the gravitational waves.
The fullscale detectors which have been planned for the
future have armlengths 3 to 4km and expected peak
sensitivities ~ 107%% or 10~?* [27. Our current knowledge
of astrophysical sources indicates that at such sensitivities
several events per year may be observed.

Data from such detectors would be sampled at a rate of
~ 100 kHz and ali through the year [3]. Unless on-line data
analysis systems which can search for a variety of signals are
designed, all the effort in doing such an experiment will be
wasteful as the number of expected events are not too large
and it is neither desirable nor practical to store all the data.
With this view in mind several groups have been concen-
trating on the design of data analysis systems that can
effectively pick out specific signals from noisy detector
output. In this paper we present one such algorithm to
detect gravitational waves from coalescing binary systems.

Coalescing binary systems are one of the more promising
sources for the detection of gravitational waves with broad
band detectors [2]. A compact coalescing binary system
consists of two stars, typically neutron stars or blackholes,
which orbit around each other bound by their mutual
gravitational attraction. The general theory of relativity
predicts that such a system should radiate energy in the
form of gravitational waves [4]. The gravitational waves
emitted carry away the energy and the angular momentum
of the system, causing the two stars to spiral-in. The wave's
frequency is just twice the orbital frequency of the system.
With the in-spiral of the two stars, the amplitude and the
frequency of gravitational waves increase. Thus, the nature
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of the gravitational waves emitted by the system has a very
characteristic waveform—the so-called chirp waveform. The
power emitted in the process depends not only on the
distance between the component stars but also on their
individual masses. However, in the Newtonian approxima-
tion a certain combination of the masses—the mass
parameter—determines the evolution of the system. Such
binaries are expected to spiral-in and coalesce over time
scales that are much less than the age of the universe. Recent
estimates [ 5] show that the event rate is about three per
year in a volume of a sphere of radius 200 Mpc. Near
coalescence the physical conditions in the vicinity of the
system will be such that an understanding of the nature of
the gravitational waves would entail a fully general
relativistic treatment of the evolution or at least a certain
approximation that incorporates some of the strong field
effects of the fuil theory. Since the fully general relativistic
solution to the two-body problem has not been obtained so
far, there have been efforts to make use of the weli-known
post-Newtonian and post-Minkowskian approximations
[6] and numerical methods with high resolution grids on
fast computers [7]. These investigations indicate that the
waveform from coalescing binaries would be different from
those based on Newtonian approximation and novel algo-
rithms will have to be employed for the analysis of data.

Parallel processing is a new development in the area
of fast computing which overcomes the von Neumann
hottleneck [8] and promises to be very useful in analysing
data from gravity wave detectors. Parallel processors avoid
this bottleneck because they are multiple instruction
multiple data systems. Development of application sofltware
related to data analysis on such systems has become
extremely important since, as mentioned above, the present-
day physics problems involve formidable amounts of data
and sophisticated processing. For instance, the matched
filtering technique is a very powerful tool for detecting
known signals that are buried in noisy data. This technique
makes use of the fact that the waveform of the signal is
known accurately. When the noisy output of a detector is
correlated with a copy of the expected signal, the correlation
1s also noisy. When a signal of sufficiently large amplitude is
present in the output of a detector, the correlation will peak
at a time when the signal arrives at the detector. Because of
the random nature of the noise, it is possible that thereis a
chance large amplitude in the correlation—the so-called
false alarm [9]. However, if we choose a sufficiently high
threshold so that the chance of a false alarm during a certain
time of observation is vanishingly small, then we can be
confident of detecting the presence of a signal by looking at
the height of the correlation.

Matched filtering is a promising tool for detecting
gravitational waves from coalescing binaries [2, 3],
aithough there exist other algorithms to detect them (see,
e.g., [10]). Even though the waveforms of certain signals,
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like coalescing binaries and quasi-normal modes of a
black hole, are known, the experimenter will not know
beforchand what the values of the parameters are. The
method followed then consists of constructing a bank of
filters which scans the relevant range of parameters, which
correlates a data segment with each of these filters. Since
calculation of each correlation is independent of any other,
the problem is highly parallelizable; matched filtering is a
multiple instruction single data problem and therefore
parallel processing is the appropriate approach. However,
there are other complications. The number of filters needed
to search for gravitational waves from coalescing binaries in
the astrophysically relevant range of parameters is for-
midably large—about a couple of thousand. Thus, if one 1s
using a parallel machine like a set of interlinked transputers,
due to the large number of templates through which one has
to filter the output, data transfer times and communication
overhead would be appreciable and every effort should be
made to minimize such overhead. This can be achieved by
connecting the processors in a judicious manner so that the
resulting topology leads to minimization of data transfer
times and communication overhead. In this paper we
present one such algorithm that is well suited to detecting
gravitational waves from coalescing compact binaries and
which takes care of the problems mentioned above. We
also describe its implementation on a parallel machine
consisting of a network of 256 transputers. The code
developed here can be modified easily to suit any other set
of matched filters, with the basic methodology remaining
the same. Similar implementation can also be found in the
work of J. Watkins [11].

The paper is organized as follows. In Section 2 we discuss
briefly the nature of the coalescing binary waveform. We
also discuss a criterion for detecting signals and show how
a lattice of filters corresponding to various parameters can
be constructed. In Section 3, we present an algorithm to
detect chirp signals and describe the implementation of this
on a parallel machine.

2. THE COALESCING BINARY SIGNAL

During the final stages of its evolution a binary system of
stars emits a burst of gravitational waves with a very
characteristic spectrum. There are two independent wave
amplitudes corresponding to the two independent polariza-
tions of the wave. However, the response of the detector is
a linear combination of the two amplitudes and, therefore,
for the purpose of developing data analysis algorithms, it is
sufficient to deal with only the normalized response function
as shown in [ 12] (henceforth referred to as paper I). In our
discussions we shall use the noise-free normalized response
g(t;t,, ¢, @) given by

qlt: 1, & @)= A a(t)” " cos[v,E(1 —alr)®) + @],
(2.1a)
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where
a(t;ry=(1-¢ "t —1.)), (2.1b)
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é— 3.00 [F@:I [WH_ZJ S, (2.10)
v =320n|: S ]Ha (2.1d)
“ 100 Hz

Here M =2x10* g is the mass of the Sun; A" is the nor-
malization constant; & is the time taken for the two stars to
coalesce, starting from the time when the frequency of the
gravitational wave is f,; and .4 is called the mass parameter
and is related to the reduced mass, u, and the total mass, M,
of the binary by .# = (u*M 35, For a fixed f,, & serves as
one of the parameters of the signal instead of .#. The time
when the gravitational frequency reaches f, is ¢, and is
called the time of arrival of the signal. In the context of
gravity wave detectors, whose sensitivity has a lower cutoff
around 100 Hz, it serves as the second parameter of the
signal. Finally, @ is the phase of the signal at t=1¢,. Thus,
the response or the signal is characterized by three
parameters: the coalescence time, the time of arrival, and
the phase. It should be noted that the binary system is
assumed to consist of point mass stars and the standard
quadrupole radiation formula has been used (sce, e.g.,
[137]) in deriving the above waveform. Thus, this waveform
will not accurately describe the actual wave emitted by the
system when the two stars approach relativistic speeds
and/or when the tidal interaction between the two stars
becomes important [6]. The waveform can at best be used
up to times that are not too close to the coalescence time.
Since the sensitivity of laser interferometers is expected to be
peaked around 100 Hz this finer point need not concern us
in the present paper. We shail treat the waveform to have
compact support—it is non-zero only in the frequency range
100-1000 Hz.

The noise in real detectors is expected to be colored and
its nature depends on the kind of technique empioyed to
enhance the sensitivity of the detector [ 2]. However, for the
purpose of setting up an algorithm to detect gravitational
waves the nature of the noise, while important, is secondary.
Thus, we assume that the detector noise is Gaussian with a
flat power spectrum. In that case the normalization constant
A" is determined by the condition that the maximum of the
auto-correlation, divided by the noise power spectral
density, S,, is equal to unity:

_Sl',, mj}X J.iO gty gle+ dr) de
1 2
=— 1) dr
hLmM)

(2.2)
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This normalization has several advantages (sec Ref [12]
for details). Note that the normalization is different for
waveforms with different coalescence times. This is
permissible since the multiplicative constant for filters is
arbitrary and the signal-to-noise ratio is independent of this
constant.

We can now express the actual waveform [2,3] of a
coalescing binary including all its dependences on the
distance to the binary, etc., in terms of normalized fiiters.
The multiplicative factor S, which we call the strength of the
signal, will contain the distance to the binary and the
coalescence time:

Mt 1, & @) =8q(t;1,, &, P). {23)
The gravitational wave from a coalescing binary located at
a distance r and whose coalescence time, starting from a
frequency £, is £, is of strength

_ r -t fa -
&n&ﬁﬁ-“j[WOMm} [wOHJ

s, IR
X[1048Hz_‘] [35} - 24

where 1 Mpe = 3.086 x 10% cm.

In the matched filtering technigue the statistic used to
decide the presence or absence of a signal is the correlation
of the output with a filter. Due to the choice of our
normalization it turns out that the expected value of the
maximum of the correlation is nothing but the signal
strength (2.4) itself for a perfectly matched filter. We say
that a signal is present if the maximum of the correlation
crosses a preset threshold x. The threshold is set by allowing
for one false alarm (due to noise) in a year’s time. The
sampling rate of 2.5 kHz and 100 filters per second implies
one crossing in 10'? trials. For a Gaussian noise distribution
with standard deviation & this implies # ~ 7. The filters will
be constructed for a discrete set of values of the parameters
while the actual signal could have any values for these
parameters. In general, therefore, the values of the
parameters of the signal would differ from those of the filters
in the set and the expected value of the signai-to-noise ratio
will be less than the signal strength. It is therefore possible
to detect, with a great confidence level, only those signals
that have strengths larger than the threshold by a certain
amount. How large the strength should be depends on the
spacing between filters in the parameter space. In the
context of the detection of chirp signals we essentially need
to construct fiiters for the phase and the mass parameters;
the time of arrival is decided when the correlation peaks.

In paper I, we have shown that there is a two-dimensional
basis on which a signal of arbitrary phase can be expanded.
As a result, the maximum correlation between a signal and
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a filter of arbitrary phase, for a given mass parameter and
arrival time, can be found analytically by using only two
filters.

Suppose we are interested in detecting all signals of
strengths greater than or equal to a certain minimal strength
Smin =K1, k> 1. We begin with a filter with coalescence
time ¢ = £, corresponding to an initial mass parameter .4, ,
say 0.5M,, at the lower end of the mass parameter range. A
signal whose coalescence time is ¢, produces a correlation
equal to k. As we decrease the coalescence time £ of the
signal (this corresponds to an increase in .#), the correla-
tion decreases and for some value of the coalescence time,
say £, + 1 4, of the signal it hits the threshold ievel. Further
mismatch reduces the correlation still further and another
filter is needed to detect such signals. We have shown in
paper I that for the astrophysically interesting range of mass
parameter values, the correlation (in the stationary phase
approximation) depends only on the differences in the
parameters of the signal and the filter. This implies that the
spacing between filters remains a constant. Choosing
the filter spacing to be A¢ guarantees that the correlation of
a signal of minimal strength always exceeds the threshold
(the A& defined here is twice that in paper I).

For a given value of x, the bank of filters is the set charac-
terised by the coalescence times &, where

£k=€l_(k_l)dés

k=12 ..,n (2.5)
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FIG. 1. A plot showing the dependence of the number of filters as a
function of x = S;, /. Note that for minimal strengths below about 1.15
the number of filters required rises sharply, indicating that it is harder to
improve the sensitivity beyond a certain value. This plot is obtained for the
initial mass parameter 0.5M,.
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Note that in the filter bank, there are two filters corre-
sponding to two values of the phases 0 and =/2, for each
value of ¢,. Thus the bank consists of n, =2n filters. We
may choose n so that £, is just greater than zero. This
ensures a high value for the mass parameter at the upper
end of the range.

No simple analytical relation exists between A& and « in
the white noise case, as the second derivatives of the correla-
tion at the peak become infinite and no Taylor expansion is
possible [14]. However, the relation between A¢ and x is
implicit in Fig. 1. Figure 1 shows the number of filters #n,
plotted against x = S,,;,/# for the initial mass parameter
My =0.5M¢, ({,=9.54s). We have the relation 4& ~ 2¢, /n,
which connects A& to » through Fig. 1. For exampile, for
k=125 we obtain from the figure, n,~ 1150 and hence
A& ~ 16.6 ms.

3. PARALLEL ALGORITHM FOR MATCHED FILTERING

In this section we first discuss the demands on the
computing speeds brought about by the need to filter each
data set through several thousand templates and how this
affects the volume of space from which we can expect to
detect gravitational waves. We then go on to describe the
algorithm which we have developed to search for chirp
signals by using the matched filtering technique on a
network of interlinked transputers. The algorithm reported
here is similar to the one found in Ref. [117.

A. On-line Data Analysis

The astrophysically relevant range of the mass parameter
for coalescing binary systems is [0.5,20] M. If £, and ¢,
are the corresponding vaiues of the coalescence times and
A& is the distance at which the correlation between a filter
and a signal of minimal strength falls down to the threshold
level, then the total number of filters, n,, including two basis
filters for the phase for each mass parameter filter, is

) o

Generally, §, < ¢, and we can write n,solely in terms of .#,
using (2.1¢):

B M] —5/3 fa —B8/3 Aé —1
ny =300 I:Vo:] |:100 Hz] [20 ms] - (32)

A graph of the number of filters as a function of S, /% is
plotted in Fig. 1 (cf. Table IIT in paper I) for .#, = 0.5M. It
clearly demonstrates that we have here a case of diminishing
returns: close to the threshold one has to fight harder to
improve upon sensitivity; very little is gained in choosing
the minimal strength to be less than about 1.1y while the
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number of filters, and effectively the cost of computing,
increases enormously below this value. Now, the computing
speed dictates the coarseness or fineness of the lattice—the
greater the available computing speed, the finer the lattice
and the weaker the signal strengths that can be detected.
Aithough little gain in sensitivity is brought about at the
cost of a heavy investment on computing, it should be
remembered that while the signal strength falls off as 1/r, the
number of events is proportional to the volume which scales
as r>. Thus, detecting weaker signals also means an increase
in the number of events, which is very important for the
detection of gravitational waves. Therefore, a compromise
has to be reached on the choice of minimal strength. This
brings us to another question in the data analysis problem,
in the context of gravitational wave detection, viz., analysis
of data in real time. Let 2 be the speed of the computer
measured in units of the number of miilien floating-point
operations per second (MFLOPS). It is straightforward to
show that such a machine can filter the data on-line through
a number of n, of filters given by

b A=t -
. (33
100 MFLOPS][Zé kHz] (33)

n_,=1000[

Here A is the sampling interval between consecutive data
points. We now have two equations for the number of fiiters.
Equation (3.2) relates the number of filters to the range of
mass parameters in which the search is carried out and the
distance between filters. On the other hand, (3.3) reiates the
number of filters to the demands on computing speed for
on-line data analysis. Equating these two expressions, we
obtain a very useful relation between computing speed and
the spacing between consecutive filters:

by ol B L | /7 B
= 6 _
[100 MFLOPS] [2.5 kHJ[M@]

fo 1Y
* [100 Hz| ™

The usefulness of this relation is twofold. On one hand,
given a spacing between filters it tells us what the minimum
computing speed should be in order to do on-line data
analysis; on the other hand, given a machine of a certain
speed it facilitates a choice for the spacing between filters in
order to do on-line data analysis. This has deep implications
since the spacing between filters is related to the minimal
strength of detectable signals and hence the distance up to
which we can see. The smaller the spacing between filters,
the lower the minimal strength of detectable signals,
implying a greater distance up to which we can see, and
hence a greater event rate. For instance, if 4¢=16.6 ms
then for .#, =0.5M,, we would need a machine of speed
115 MFLOPS to process the data on-line. With this set of

4

e

(3.4)
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filters, the distance up to which the binaries can be detected
is ~ 500 Mpc (see paper I for details).

B. The Numerical Algorithm and Its Implementation

The computer that we have used for the simulation is
a network of 256 INTEL T-800 chips interlinked with
one another. It is possible to use any topology for the
connection of different processors since there is a hardware
link from each transputer in the network to every other via
a cross-bar exchange. The only constraint in the present
configuration of the machine is that only one transputer in
the network can access the host. (We believe this constraint
will soon be removed.)

For the simulation of the experiment we have two rasks.
The first one, henceforth referred to as the master task, has
access to the host and performs the necessary i/o and
bookkeeping. The second task, henceforth referred to as the
worker task, searches for the coalescing binary signal by the
method of matched filtering. A copy of the worker task is
placed in the rest of the processors.

While we are using a network of a large number of
transputers, data transfer and communication overhead will
cost appreciably more if proper care is not taken in setting
up the algorithm. However, the availability of concurrent
processes—the so-called threads-—{acilitates the choice of a
very simple topology while avoiding the overhead. We have
connected the processors in a ring topology as shown in
Fig. 2. As we shall argue and demonstrate below, such a
configuration leads to a linear increase in the machine speed
as the number of processors in the network is increased.
Maoreover, this configuration is immediately portable to a
network consisting of any number of transputers without
any change in the source code.

Main
program

Main
program

Main
program

Thread Thread Thread

Master task First worker task Last worker task
FIG. 2. The topology for communication between processors. On
each transputer there is a main program and a thread. The main program
in the master task does the necessary i/o and the thread generates the data
that mimics the output of a gravity wave detector. The main program in
each worker task avoids the accumulation of communication times by

having a data set ready for analysis with the help of a thread.
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In our algorithm both the master and the worker tasks
have threads. A thread in parallel Fortran is a subroutine of
the main program that runs concurrently with the main
program and has its own workspace. A thread can share
common blocks with the rest of the code and has access to
communication channels too. Thus, if a sertal code has
several pieces, each of which can be executed independently
of the other, then it is possible to execute each of them
concurrently by having those pieces as threads. For
instance, in our problem, when the worker task is analysing
data we can have a concurrent thread which receives data
from its input port and keeps it ready for analysis. We
use the following terminology in the description of the
algorithm: the main programme will be referred to as
the mrain thread and any concurrent processes that are
initialized by the main routine will be referred to as
subsidiary threads.

First data set from k-1 task

Is k=N? No

Yes Send data to k+1 task

Send dats to Thread

Next data set from k-1 task

<ka~? Na

Yes

Send data to k+1 task

Get results from Thread

Send data to Thread

fs k=17 No

Get results from k-1 task

Compare the two results

Send results to k+1 task

FIG. 3. Flow chart for the main thread in the worker task.
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The two tasks together perform data analysis in the
following way. Since the programs are intended to be por-
table to a network consisting of any number of transputers,
the master task first sends initialization parameters to the
first worker task which in turn passes it on to the next
worker and so on. The identity of each task is maintained by
an id number. The id of each task tells it the range of mass
parameter values for which it should construct filters.
The worker tasks store only the Fourier transforms of the
filters to save on the number of operations in computing
the correlations. Each computation of a correlation then
involves just computing an inverse Fourier transform
amounting to 3N log, N operations. Since we are placing
one task per transputer, given the speed 2 of a transputer,
Eq. (3.4) can be used to find the maximum number of filters
per task. The sustained speed of a T-800 chip is about
0.5 MFLOPS. Thus, for on-line analysis it is necessary that
each task have at the most five filters; in the simulation that
we have carried out, 10 filters are placed on each task in
order to analyse data for a low value of the minimal
strength.

After initialization, the main thread in the master task
generates Gaussian, stationary, white noise using the Inter-
national Mathematical and Scientific Library (IMSL) sub-
routine GGNML. A chirp waveform sampled at 2.5 kHz is
added to the noise with a 50% probability so that a data
segment may or may not contain the signal; the values of the
mass parameter, phase, and time of arrival are chosen ran-

domly. Finally, the FFT of the data segment is taken using

the REALFT routine of Numerical Recipes [15]. The data
$0 generated is sent to the main thread in the first worker
task which in turn sends it first to the main thread in the
second worker and then to its subsidiary thread and so on.
In Figs. 3 and 4 we have shown the flow charts of the main
and the subsidiary threads, respectively, of the worker task.
The subsidiary thread in the worker task filters the data

Generate Filters

Receive Data

%

Analyse Data

Send Results

FIG. 4. Flow chart for the subsidiary thread in the worker task.
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through the filters that it has built. The filtering involves
computation of the correlations and maximization over all
the parameters. Maximization over phase-shift is done
analytically using the fact that there exists a two-dimen-
stonal basis in the phase-space. The maximum over the mass
parameter and the time-shift is found numerically. The
results of the search that it has carried out, viz,, the maxi-
mum of the correlation, together with the corresponding
values of the parameters, are sent to the main thread, which
in turn immediately passes on a fresh data segment. The
subsidiary thread then begins analysing the fresh data set.
After having sent the data set to the subsidiary thread, the
main thread secks the results of the analysis carried out by
a previous worker task, if any, and then sends the results
corresponding to the larger of the two correlations to the
next worker task. In this way the results of the analysis
corresponding to the maximum of the correlation reach the
master task which sends an alarm if the signal-to-noise ratio
is larger than the threshold, For the purpose of studying the
noise characteristics and other housekeeping, all signilicant
events are recorded by the master task.

From the flow charts in Figs. 3 and 4 it is clear that as long
as the data transfer rate between processors is less than the
rate at which the analysis of data is carried out, the subsidiary
thread does riot waste its time In either waiting for the data to
arrive or sending the results of its analysis through to the main
thread. This is because the main thread in each worker task
would have received the data from a previous worker task
and sent it to the main thread of the next worker task much
before its subsidiary thread can send results since inter-
processor data transfer rates are much larger than the
rate at which the analysis is carried out. As an example,
data transfer rates across hard links of a transputer are
~2 Mbytes/s while a typical data set is only as large as
120 kbytes. On the average, such data segments require
analysis times ~40 s. Thus, if we use a ring topology com-
munication, overhead will start delaying the processing only
if the number of processors is larger than about 500, In that
case a judicious choice of a more complicated topology of
processors will be beneficial.

It is quite straightforward to test that the above
statements are indeed correct. If the communication over-
head is not present in a given algorithm, then as the number
of processors is increased the computation time per pro-
cessor should remain a constant or the effective speed of the
machine should increase linearly. We have tested this for
numbers varying from 4 to 256 transputers on the network
and found that the increase in speed is linear to a very high
degree of accuracy.
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